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Objectives

e \What is a model.

e Modeling formalisms
e Specific models

e Population variability



What is a model

Y (state) —2%_5 X (observations)

e Simplified representation of a
complicated reality (the system)

e Captures (describes) key behaviors of
reality

e [wo basic choices:

e Level of system specification
» Pathways vs Cells vs Organs vs Organism
» Multiscale

e Modeling framework specification
» Mathematical/statistical/others



Why a model?

e Predictions

e Survival

e Hurricane path and strength
e Insight/interpretation

e What-if scenarios?

e ‘Rank” drivers of outcome



Model structure
Variables and Parameters

Y = mX+b
e Variables (Y, X) are:
e Input into the model, output from the model (state)
e Independent predictors

e Observable from the system

e Parameters (m, b) are:
e Integral part of the specification of the model

e Adjusted to have model “fit" the data

» Poor fit suggest the model does not capture the behavior
of the system




Scale and granularity

Top-down
* Abstract
* Few variables and parameters
* May or may not offer useful predictions

Data-rich _ Knowledge-rich
« Data-driven « Causal

. aglf glec %Iif?igzrﬁspondence « Extensive use of prior knowledge

 Black-box - White-box

Bottom-up
* As close to reality as possible
* Broad knowledge-gaps
» Computational intractability




Statistical (data-driven) models

e \What they can do

e Classify
o Discriminate (ROC)
o Cluster

e Predict (calibration, e.g. R?)
e \What form do they take

e Regression

e Machine learning
» Neural networks
» Graphical
» Many others

e Combinations



Time-dependent statistical predictions

P(ICU|ICU)=f(SOFA scores, ICU day)
A Probability can be derived from
*Observed transition probabilities

*Other models

P(death|ICU)=h(SOFA scores, ICU day) P(death|ICU)=g(SOFA scores, ICU day)

Discharged
alive



Actual vs predicted
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Statistical models

e Advantages
e Good to predict population outcome
e Take advantage of associations

e Disadvantages

e Not as good to predict the outcome of an
individual, except at extreme of predictions

e Knowledge poor, no inclusion of a priori
Known mechanisms

e Require large amount of data

e Subject to assumptions (e.g. distribution of
data) that may not always be fulfilled

e Require careful approach to missing data




Equation-based models

e Non-dynamical
e Describes relationships between variables
» Typically algebraic
e Description of steady-states, transients
unimportant
e Most traditional physiologic model
e Cardiopulmonary physiology

e Dynamical
e Difference equations

e Differential equations
» Time-dependence (Ordinary DE)
» Time and space-dependence (Partial DE)



Equation-based models

e Knowledge-rich

e Basic laws (rules) of the system are provided
a priori
e Also true of agent-based models
e Clear sense of causality

e May or may not be constructed as to reflect
physical reality
e Can be very high level

e Although basically deterministic, can clearly
accommodate stochastic elements, thus
uncertain knowledge

e \Well developed mathematical theory



Scale and granularity

Top-down
* Abstract
* Few variables and parameters
* May or may not offer useful predictions

Data-rich _ Knowledge-rich
« Data-driven « Causal

. aglf glec %Iif?igzrﬁspondence « Extensive use of prior knowledge

 Black-box - White-box

Bottom-up
* As close to reality as possible
* Broad knowledge-gaps
» Computational intractability




Equation-based models - caveats

e Even small systems can have large number of
parameters
e Parameter reduction techniques are available

e Many of the parameters are not known

e Even if we think we have good literature documentation
o Biological data was typically not collected with modeling in

mind
e Molecule half-life
e Reaction rates
e Models are typically underspecified: many different
combination of parameters can explain data equally
well

e Structure vs parameters problem

e Underlying assumptions may not be fulfilled (e.g.
continuity)



Viral Models — Population based

e Largely empirical
e Susceptible, Infected, Recovered/resistant
e Yet, knowledge of basic determinant of
such models is important
R, 6
e Social networks
e Health delivery services infrastructure



Motivation for biological models

e Explain input to larger models

e Explain manifestation of disease
e Disease severity
e Age, co-morbidity
e Explore modifiers of disease that act at
the individual level
e Susceptibility
e Transmissibility
e Vaccine effect
e Antibiotics



Population models

One infects
very many

High epidemic
potential

RO
_ Low epidemic
One infects potential
very few
Transmission Transmission
after symptoms before symptoms



Biological models

e Models of Host-Virus interaction
e HIV (a lot), as well as other retroviruses
e Influenza, HBV, West Nile, Smallpox

e Little traction in translational research

e Exception is multiple interruptions of
therapy in HIV carriers



® Biological Models of viral infections
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e Since early 1990’s
o HIV

e Nowak, Perelson, Kirschner, Wodarz
e Object
o HIV/CD4+ interaction
o Optimizing therapy
o Dynamics of viral mutation and multiple infections
e Influenza
e Bocharov, Hancioglu, Beauchemin
e Hepatitis B, C

e Bocharov



The simplest viral model (v0.1)

Healthy
cell g

a - where active cell killing
is implicit in this death rate

u - virus death
or shedding

v [l
Killer

cell



The “reaction” formulation

X: healthy cell
Y: infected cell
V: virus

R: killer cell

*—> X
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y—>V

;<=/1—,Bvx—dx
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V+ X—Y

d u a
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\./= Ky — uv — BvX




With a killer cell (r)

A
* — X .

K X = A - Bvx —dXx
yﬁv [ ]
B y = VX — ay
V+ XY .

d u a V=ky—UV—ﬂVX
X = * Vo> * Yy *

y = pvx—ay—yry

r=c— fr




¥ The reverse transcriptase example
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A (slightly) more realistic model

e HIV infects CD4+ cells

e These CD4+ cells are responsible for
the clonal expansion of cytotoxic T
lymphocytes

e Could “controlling” virus expression
allow sufficient CD4+ activation to allow
sufficient CTL to maintain a chronic
carrier state — given a fixed antigenic
mutation rate?



Lessons learned from biological
models of HIV

e Rapid drift, a major impediment for vaccine
development, is our worse enemy -
preserved ability of clonal development of
CTLs

e Models have predicted that an optimal
strategy for HIV containment would include:

e Early HAART (highly active anti retroviral
therapy) intervention
e Frequent interruptions of therapy to minimize

drift while CTL clones are enrolled (Structure
Treatment Interruption, DRUGS 2002)




Translation (STI strategy)

e SMART, OPTIMA (in unsuppressed HIV)

Structured treatment interruptions (STI) in chronic
suppressed HIV infection in adults (Review)

Pai NP, Tulsky JP, Lawrence J, Colford Jr JM, Reingold AL

e STACCATO (Lancet 8/2006)

CD4-quided scheduled treatment interruptions compared
with continuous therapy for patients infected with HIV-1:
results of the Staccato randomised trial

siths




Inflammation — a reduced model

Pro-inflammation <

\l
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Inflammation — a reduced model




The reaction system




p is pathogen, m is a pathogen predator, | is a late mediator,
possibly tissue dysfunction. So, 3 variables, 7 parameters.

Kumar et al. J Theoretical Biol 2004
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Up to five solutions = fixed points or orbits

A solution is a combination of p, m and |
that fulfills all equations simultaneously

» Each solution depends on the actual
parameter values



What are possible

outcomes? o
FP3 Sterile death
Persistent
Infectious
death

FP2

Immune failure
death




The notion of stable/unstable
regimen

O







Insights from a simple model

e Only 3 (4) regimen are ever possible
e Cure
e Oscillations with low grade pathogens
e Aseptic death
e Immunesuppression (septic death)

e There are specific conditions for the
existence of those regimen

e There cannot be “aseptic” death if
collateral damage production does not
exceed a certain threshold



The role of anti-inflammatories

Pro-inflammation

&

Initiating Event , Damage/Dysfunction
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Manipulating anti-inflammatories
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Why complicate things

e To calibrate a model, we need to confront
It to data

e [0 “intervene” in the dynamics in a realistic
way, more realistic “handles” are needed

e Variability
e Not all “'modules™ need to be equally
complicated

e [he analysis of large models:
e May rapidly become intractable
e May not yield useful results



e Oxygen and carbon dioxide
exchange

Inflammation occurs in the tissue
barrier between air and blood.
Tissue swelling impairs gas
diffusion. Extreme inflammation of a
respiratory unit (~25 alveoli) can
completely stop gas exchange
(shunt).

The global impact of inflammation
depends on the combined
contribution of respiratory units
(RU) with diverse anatomical and
physiologic properties.

owing alveoli




Model schematics




Simulation results
Gas exchange — single unit
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Simulation results
Lung volumes — single unit
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Full lung model
Assembling heterogeneous units
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- == Single RU with maximum tidal volume

— = Single RU with normal tidal volume
Single RU with minimum tidal volume
Full lung model

= Full lung model with shunting
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Optimization

e Parameter identification
e Inverse problem / data assimilation
e Variability

e Control

e Modify inputs to a model to achieve a
desired outcome



Patient-specific metamodel

t(M_) = Metamodel or Ensemble

Where the individual models vary in their
mathematical structure and parameters



Population variability in the response
to Influenza virus

* Uncertainty in available data: measurement error
* Inter-individual variations

Best approached with stochastic methods










readers




Conclusions

e Inflammation has several different
components

e Inflammation is a multiscale problem

e A variety of modeling formalisms can be
used
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